Researchers in Li
"We were trying to test whether the older germline is less efficient at mutation repair, or whether the older germline just starts out more mutated," says first author
Genomes keep themselves tidy using a handful of repair mechanisms. When it comes to testes, they have to work overtime; testes have the highest rate of gene expression of any organ. Moreover, genes that are highly expressed in spermatogenesis tend to have fewer mutations than those that are not. This sounds counterintuitive, but it makes sense: One theory to explain why the testes express so many genes holds that it might be a sort of genomic surveillance mechanism -- a way to reveal, and then weed out, problematic mutations.
But when it comes to older sperm, the researchers found, the weed-whacker apparently sputters out. Previous research suggests that a faulty transcription-coupled repair mechanism, which only fixes transcribed genes, could be to blame.
The next step is to expand the analysis to more age groups of flies and test whether or not this transcription repair mechanism can occur -- and if it does, identify the pathways responsible, Witt says. "What genes," he wonders, "are really driving the difference between old and young flies in terms of mutation repair?"
Because fruit flies have a high reproductive rate, investigating their mutation patterns can offer new insights into the effect of new mutations in human health and evolution, says Zhao.
Witt adds, "It's largely unknown whether a more mutated male germline is more or less fertile than a less mutated one. There's not been very much research on it except for at a population level. And if people inherit more mutations from aging fathers, that increases the odds of de novo genetic disorders or certain types of cancers."
SEE ALSO: